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Regioselective hydroxylation at the C-7 and the C-9 position of ent-kaur-16-ene (2) was achieved via radical 
cyclization of a hydroxymethyl group introduced at the (2-15 position followed by removal of the carbon atom at 
c-15. 

Recently, we reported that ent-15P-hydroxykaur-16-ene (1) 
showed a potent stimulating effect on corticosterone produc- 
tion in isolated rat adrenal cells.1 This finding stimulated our 
interest into investigating the steroidogenic effect of various 
monohydroxykaurenes. Hydroxylation of the unactivated 
carbon atom on the c ring in the kaurene skeleton has been 
published by Kato and Wada.2 We also reported a more 
convenient hydroxylation at the C-12 and C-14 positions of 
eat-kaur-16-ene (2) through the regioselective C-0 bond 

cleavage of cyclic ether intermediates with A1C13-NaI.3 
However, functionalization of the B ring of (2) has not been 
reported so far. Here, we report regioselective hydroxylation 
in the B ring of (2). 

Our strategy involves the radical cyclization4 of the newly 
introduced hydroxymethyl group at the C-15 position in the 
17-norkaurane. From consideration of the molecular model, 
15a- and 35fbhydroxymethyl groups were expected to cyclize 
to the C-7 and the C-9 positions, respectively, giving inter- 
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47% yield. The removal of the extra carbon atom at C-15 was 
carried out by a radical cleavage reaction of the hemiacetal 
derived from the cyclic ether (15) .9 Namely, the lactone (16)t 
which was obtained in 68% yield by the careful oxidation of 
(15) with ruthenium tetroxide was converted into (17) by the 
di-isobutyl aluminium hydride reduction and by the hypo- 
iodite reaction of resulting hemiacetal with lead tetra-acetate 
and iodine. The unstable iodoformate (17) was immediately 
reduced with Bu3SnH in the presence of NaBH4 in ethanol to 
give the alcohol (18) in 73% overall yield from (16). Oxidation 
of the methoxy group in (18) with ruthenium tetroxide and 
introduction of the exo-methylene group by Lombardo's 
procedurelo yielded the desired ent-9a-hydroxy-kaur-16-ene 
(4) in 85% overall yield from (18). 

The synthesis of 15-oxokaurenes from hydroxykaurenes is 
in progress since hydroxy and acyloxy groups in the anti- 
tumour active kaurenoids which have an a-methylene 
cyclopentanone system as the active site in the D ring appear to 
play an important role in enhancing the antitumour activity.11 
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mediates which can be transformed into hydroxykaurenes (3)t 
and (4)f by the removal of the extra carbon atom at C-15. 

The reaction of the zinc enolate of ketone (5)5 with 
formaldehyde in diethyl ether at -30°C yielded the 15a- 
hydroxymethyl ketone (6) in 85% yield resulting from attack 
at the less hindered side. Since the presence of the C-16 
carbonyl group effected elimination of the hydroxymethyl 
moiety during the radical cyclization with lead tetra-acetate, 
the carbonyl group in (6) was converted into the acetoxy group 
by successive treatment with NaH-Me1 in dimethylform- 
amide, NaBH4 in MeOH, Ac20-pyridine, and A1Cl3-NaI in 
MeCN-CH2C12 to give (7) in 80% overall yield. On the other 
hand, the 156-hydroxymethyl derivative (8) was produced in 
75% yield by dehydration of (6) with p-MeChH4S03H in 
benzene with azeotropic removal of water followed by 
hydroboration-oxidation of the resulting a,p-unsaturated 
ketone. The diol(8) was transformed into the methoxyalcohol 
(9) in 73% overall yield by dimethylation with NaH-Me1 
followed by partial demethylation with A1Cl3-NaI.6 

Treatment of (7) with lead tetra-acetate in refluxing 
cyclohexane for 5 h produced the cyclic ether (10) in 72% 
yield. The oxidation of (10) with ruthenium tetroxide7 
proceeded smoothly to give the keto-acid (11). Sodium 
borohydride reduction of (11) followed by acid treatment in 
methanol led to diol (12) which was converted via lactoniza- 
tion with NCS-Me$ and oxidation into (13)t in 65% overall 
yield from (10). Removal of the lactone-carbonyl group was 
readily carried out in refluxing ethanol in the presence of 
potassium hydroxide to generate hydroxyketone (14). The 
desired ent-7fl-hydroxykaur-16-ene (3)8 was obtained by the 
Wittig reaction of the acetate of (14) followed by alkaline 
hydrolysis in 63% overall yield from (13). 

Radical cyclization of (9) with lead tetra-acetate in refluxing 
cyclohexane yielded cyclic ether (15) as a major product in 

t Compound (3): colourless powder from CH2Cl, and MeOH, m.p. 
116.5-117.3 " c ;  m/z  288 ( M + ) ;  GH(CDC13) 0.82,0.88,1.04 (each 3H, 
s), 3.50 (IH, dd, J 4 and 11 Hz, 7-H), 4.74 and 4.80 (each lH,  br. s, 
17-H). This compound was identified by direct comparison with an 
authentic sample of (3).8 (4): colourless needles from MeOH, m.p. 
98.5-99.2"C; m / z  288 ( M + ) ;  v,,,, (CHC13) 3600 and 1660 cm-'; GH 
(CDC13) 0.82,0.86, 1.14 (each 3H, s), 4.76 (2H, s, 17-H), Gc(CDCI3) 
18.6, 19.3, 20.1, 21.9, 29.3, 32.4, 33.3, 33.8, 34.7, 36.5, 40.5, 41.7, 
42.4, 43.9, 48.1, 49.1, 77.6 (s, C-9), 103.0 (t, C-17), and 155.3 (s, 
C-16). (13): colourless plates from MeOH, m.p. 186.5-187.2 "C; mlr 
316 (M+); vmax (CHC13) 1785,1740, and 1120 cm-l; GH(CDC13) 0.92, 
0.94, 1.18 (each 3H, s), 2.60 (lH, t, J 4 Hz), 2.94 [lH, d,  J 4 Hz 
(long-range coupling between 15-H and 14a-H), 15-H], and 4.16 (lH, 
dd, J 4 and 12 Hz, 7-H). (16): colourless plates from MeOH, m.p. 
170.5-171.0"C; mlz 332 ( M + ) ;  vmax, (CHC13) 1750 and 1120 cm-'; 
GH(CDCl3) 0.82,0.92,1.08 (each 3H, s), 2.78 (lH, d,  110 Hz, S H ) ,  
3.44 (3H, s, -OMe), and 3.94 (lH, dd, J 5 and 10 Hz, 16-H). The 
structures of all new compounds were confirmed by elemental 
analyses and spectroscopic data. 
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